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On weak reflection of water waves 
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The weak reflection of monochromatic water waves is studied for the cases of slowly 
varying water depth. A coupled system of equations for the forward-scattering 
(transmitted) and the backward-scattering (reflected) wavefields are derived from the 
mild-slope equation (Smith & Sprinks 1975). Parabolic approximation is then used 
to simplify the equations for the diffraction factor. An iterative numerical scheme 
is proposed to compute the resulting equations. The scheme converges very quickly 
for the cases of weak reflection. The accuracy of the present approach is shown by 
comparing with numerical results obtained by a hybrid finite-element formulation. 

1. Introduction 
Although the concept and the methodology of the parabolic approximation, first 

developed by Leontovitch (1944) and Fock (1946,1960), has been employed for many 
years in different branches of the physical sciences, it is only recently that this 
approximation has been extended to the study of gravity water waves (Liu & Mei 
1976; Radder 1979; Mei & Tuck 1980; Yue & Mei 1980; Lozano & Liu 1980; Tsay 
& Liu 1982 ; Berkhoff, Booy & Radder 1982). The primary advantage of the parabolic 
approximation is that it reduces an elliptic boundary value problem for wave 
scattering to a parabolic initial-value problem (Lundgren 1976) ; either analytical or 
numerical solutions can be obtained efficiently taking advantage of the almost- 
unidirectionality of wave propagation. This technique is especially useful for 
evaluating the wave environment in nearshore regions where caustics (or wave 
crossings) and wave breakings may exist. 

One of the common assumptions of the work mentioned above is that the reflection 
or the backward scattering is either negligible or ignored. I n  this paper we relax this 
assumption. To obtain the parabolic system of equations for the forward- and the 
backward-scattering wavefields, we avoid formal perturbation procedures (see e.g. 
Lozano & Liu 1980) and adopt an approach based on the use of a ‘splitting’ matrix 
(Corones 1975; Tappert 1977). Since the mild-slope equation (see e.g. Smith & Sprinks 
1975) is the base of the present analysis, the resulting parabolic system of equations 
is not restricted to long waves. 

Assuming a weak coupling between forward- and backward-scattering wavefields, 
we introduce a numerical iterative scheme to solve the resulting system of equations. 
To demonstrate the accuracy and the efficiency of the scheme, examples concerning 
the scattering of a plane water wave by an elongated submerged island in an otherwise 
constant water depth are presented. Numerical results obtained from a hybrid 
finite-element formulation (Chen & Mei 1974; Tsay & Liu 1983) are used to compare 
with the present solutions. Good agreement is observed. 
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2. Derivation of governing equations 
The propagation of periodic small-amplitude water waves over a slowly varying 

topography can be described by the following mild-slope equation (Berkhoff 1972 ; 
Smith & Sprinks 1975; Lozano & Meyer 1976): 

V * (CC,Vv) + k2CCgT = 0, (2.1) 

where q(x, y) is the free-surface displacement. C = w/k and C, = dw/dk are the phase 
and the group velocities respectively, deducible from the dispersion relation 

w2 = gk tanh kh, (2.2) 

where h(x, y) is the water depth, w the angular frequency, k the local wavenumber 
and g the gravitational acceleration. 

We assume that the water depth is a constant h, everywhere except in a region 
D with slowly varying water depth. Incident waves propagating in the positive 
x-direction have a wavenumber k, which is associated with h, through the dispersion 
relation (2.2). We shall consider here the scattering of the incident waves by the 
bottom variations. Accordingly, we rewrite (2.1) as 

where Q2 is a pseudodifferential operator 

As incident waves enter the region with varying water depth, we assume that the 
complete wavefield can be split into a transmitted wavefield (forward scattering) and 
a reflected wavefield (backward scattering). This can be accomplished in many ways; 
for instance, one can use the Liouville-Green approximation (Carrier 1966 ; Meyer 
1979). Here we follow Bremmer's method of a splitting matrix (see e.g. Corones 1975; 
Tappert 1977; Radder 1979). Thus we now introduce the new variables r+ and 7- 
corresponding to the transmitted and the reflected wavefields respectively, i.e. 
q +  cc e*ikox, such that 

(2.5) T = T +  +T--? 

- = ik,Q(q+ -v-). 
ax 

From (2.5) and (2.6) we obtain 

Differentiating (2.7) and (2.8) with respect to x and using (2.3) for a2T/ax2, (2.6) for 
i3y/ax and (2.5) for 7, we obtain 
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It is convenient to study (2.9) and (2.10) in terms of the diffraction factors 

(2.11) 
- .  tk = r+e+lkox. - 

Substitution of (2.11) into (2.9) and (2.11) yields 

(2.12) 
ax 

ax cc, ax 
-+ 

(2.13) 

In $3 we develop an iterative numerical scheme to solve (2.12) and (2.13) for 
three-dimensional forward- and backward-scattered wavefields by a submerged 
island. 

3. Parabolic approximation for wave diffraction 
To study the scattering problem where the predominating direction of wave 

propagation is known, we adopt the standard parabolic approximation for the 
diffracted wavefield. We anticipate that the diffraction factors t+ vary slowly within 
a wavelength but faster in the direction of a wave front (y-direction) than it does 
along the wave ray (x-direction), so that 

The pseudodifferential operator Q appearing in (2.12) and (2.13) can be formally 
written as (see Tappert 1977) 

Q = (1 +E+6+V)f  (3.3) 

where 
(3 .44  

(3.4b) 

(3.44 

Equations (3.4a, b) are true owing to the mild-slope assumption, and ( 3 . 4 ~ )  is justified 
by the parabolic approximation. Expanding (3.3) in the Taylor series 

Q x 1 +a(€+ 6 +v) - - Q ( E +  6 + v ) ~  + . . . 
and substituting it into (2.12) and (2.13), we obtain the leading-order equations for 

(t+ 9 6 - )  : m+1= RE-> (3.5) 

P*[t-l= R*5+ 9 

where P is a differential operator, 

3-2 
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and R is a multiplication operator, 

I n  (3.6) theasteriskindicatesthecomplex conjugate. Weremarkthat a third-derivative 
term (l/k,)a3/i3xay2 has been ignored in (3.5) and (3.6) owing to the parabolic 
approximation, i.e. 

We remark here that for two-dimensional problems where a/ay = 0 the pseudodiffer- 
ential operator can be approximated as Q = 1 -i[(k/k,)2- 11. The two-dimensional 
versions of (2.12) and (2.13) are identical with those of (3.5) and (3.6). I n  other words, 
the parabolic approximation does not upset the calculations in the region where 
two-dimensional feature dominates. 

Equations (3.5) and (3.6) are solved numerically and iteratively by adding effects 
of successive reflections as follows : First we assume that the reflection wavefield can 
be completely ignored, i.e. 

Equation (3.6) yields the leading approximation for the forward-scattering wavefield : 

P[@'] = 0. (3.11) 

f?)) is the first member in the sequence of pairs (@), ELn)) constructed 

P*[[Ln)] = R*(knn-l) (n > l ) ,  (3.12a) 

P[[in)] = RgLn) (a 2 l), (3.12b) 

(3.10) fl'o' = 0. 

The pair 
recursively with the relations 

with suitable initial and boundary conditions. 

4. Numerical examples 
I n  this section numerical results are presented for the scattering of a plane wave 

by a submerged island in an infinite domain of otherwise constant depth. The 
cross-sectional profiles of the submerged island are shown in figure 1.  For present 
numerical experiments the ratio of the height of the island to  the water depth is taken 
as bo/ho = 0.25 and the ratio of the height to  the width of the base of the transversal 
cross-section is boll = 0.1. The incident wave period is also fixed such that k, h, = 0.42. 
The length w of the submerged island is twice that of the incident wavelength. 

Two numerical examples are given herein. The major axis of the submerged island 
is either parallel to (0 = 0') or normal to  (0 = 90') the direction of wave propagation 
(x-direction). Owing to the symmetry of the problems, only one-half of the flow field 
(y < 0) is solved. To obtain numerical solutions, the computational domain is defined 
as - c  < x < d,  - M < y < 0, which encloses one-half of the submerged island. Along 
the x-axis the property of symmetry requires that 

(4.13) 

If the right side boundary y = - M is located far away from the submerged island, the 
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FIGURE 1.  Geometrical definition of a submerged island 

magnitude of the scattered waves is small and can be ignored. Thus 

@) = 1 (y = --M), (4.14a) 

5'"' = 0 (y = - M ) .  (4.14b) 

Along the entrance line of the computational domain, the forward wave field is given 
and is normalized to  be unity : 

Q ) =  1 ( x = - c ; - M < y < O ) .  (4.15) 

Along the exit of the domain x = d ,  which is located in the constant-depth region, 
the reflected wave amplitude is zero : 

(4.16) 

Equation (3.11) is integrated from x = - c to  x = d ,  using (4.15) as an initial condition 
and (4.13) and ( 4 . 1 4 ~ )  as boundary conditions, to find ($!. Equation ( 3 . 1 2 ~ )  is then 
integrated for ELn) (n = 1) from x = d to x = - c ,  with (4.16) as an initial condition 
and (4.13) and (4.14b) as boundary conditions. Once 6") is obtained everywhere inside 
the computational domain, (3.12b) can be integrated for ti!) (n  = 1 )  with initial 
condition and boundary conditions. This procedure is repeated for n = 2,3,4,  ... until 

6'"' = 0 (X = d ;  --M < y < 0). 
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FIGURE 2. Wave amplitude of the reflected wavefield along “ / A ,  = - 1 .O and 6 = Oo. 

the converged solutions are obtained. I n  the present study the convergence condition 
is defined as g p - . p q  - < 10-4. (4.17) 

I n  the numerical computations, the following data are used: M = 5.93h0, 
c = d = 1 .08A0, where A, is the incident wavelength. The entire computational domain 
is divided into 4,628 rectangles. Each has a dimension Ax = O.O416A, and 
Ay = 0.0667h0. The small value of Axlh, is required because of the factor e-2ikox in 
(3.8). The Crank-Nicholson method is used to integrate (3.11) and (3.12) (for more 
detail see Tsay & Liu 1982). Converged solutions are obtained after two iterations 
(n = 2). 

Case 1 : 8 = OD 

For the case where the major axis of the submerged island is parallel t o  the x-direction, 
the cross-sectional area normal to the direction of wave propagation is small, 
Z/Ao = 0.167. As shown in figure 2, the reflected wave amplitude 17-1 along the line 
x/h, = - 1 .O, which is in front of the submerged bank, indicates that  the maximum 
reflection is roughly 4 %. The reflected-wave amplitude drops off sharply from the 
centreline to the edge of the submerged island. The wave-amplitude distributions 
across “ / A ,  = -0.5, 0 and 0.5 are plotted in figure 3. I n  the same figure numerical 
results obtained by a hybrid finite-element method (Tsay & Liu 1983) are also shown. 
Agreement seems to be very good. Maximum differences occur along the centreline 
y = 0 (figure 4).  Partial standing waves are observed in figure 4 owing to  reflection; 
the distance between two adjacent crests is roughly 0.5h0. The hybrid finite-element 
method (Tsay & Liu 1983) used in the computations is a direct extension of that  
developed by Chen & Mei (1974), which is essentially a long-wave approximation, to  
the mild-slope equation (2.1). The computational domain for the finite-element 
method is a semicircular region, enclosing the submerged island, with a radius A,. The 
semicircular domain is divided into 982 linear triangular elements with 534 nodes. 
The length of a typical side of a triangular element is about 0.05h0, which is 
comparable to  the grid size used in the present calculations. Outside of the 
semicircular region where the depth is constant, analytical solutions to  (2.1) in a series 
form are used in the finite-element formulation such that the radiation boundary 
condition is satisfied. It should be pointed out that  in the region with a constant depth, 
the mild-slope equation (2.1) reduces to  the well-known Helmholtz equation. I n  
numerical computations, twenty terms in the series are kept. Both the present 
numerical method and the finite-element method are run on the IBM 3701168 at 
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FIGURE 3. Wave-amp1i;tude distribution of the total wavefield for 0 = Oo: --.-.-, present 
numerical results; V, finite element results. 
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numerical results ; VVV, finite-element results. 
FIGURE 4. Wave-amplitude distribution along the centreline y = 0 for 0 = 0': present 

Computer storage CPU time Total unknowns 

Hybrid finite-element method 298K 25 s 534 
Present method 210K 19 s 4770 

TABLE 1. Numerical information 

j . 9 9  
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FIGURE 5. Wave-amplitude contours for the forward-scattering wavefield I$$/; 0 = 0'. 
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FIQURE 6. Wave-amplitude contours for the total wavefield 1 ~ 1 ;  0 = Oo. 
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FIGURE 7. Wave-amplitude contours for the backward-scattering wavefield 17- I ; 0 = goo 

Cornell University. Some of the performances and requirements by both methods are 
listed in table 1. It seems that the present method enjoys some advantages in both 
computer storage requirement and CPU time. The huge number of unknowns in the 
present method is due to the fact that both forward and backward wavefields t+ must 
be stored for iterations. It is remarked here that the hybrid finite-element method 
is restricted to the boundary value problems where a constant water depth must 
appear in the far field. 
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FIGURE 8. Wave-amplitude contours for the forward-scattering wavefield lv+l; 0 = 90° 
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FIGURE 9. Wave-amplitude contours for the total wavefield ; 0 = 90°. 

Although the total reflection is quite small in this case, the influence of reflection 
on the overall wave pattern can be clearly seen in figures 5 and 6. Figure 5 shows 
the contours of constant wave amplitudes when the reflection is entirely ignored; 
the forward wave field IQ’I represents the situation. On the other hand, the contour 
lines of the wave amplitudes obtained from the converged solutions 171 are plotted in 
figure 6. The increment of the contours in both figures is 0.015. 
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FIGURE 10. Wave-amplitude distribution dong the centreline y = 0 for B = 90". 

Case 2:  0 = 90° 

In the second example the direction of incident-wave propagation is perpendicular 
to the major axis of the submerged island. The submerged island acts as an offshore 
thin breakwater with high porosity, which reflects only a small portion of the 
incident-wave energy. Owing to the elongated shape, wave-fields over the submerged 
island and far away from the island are expected to be two-dimensional. The 
diffraction factor [*, which is caused more or less by the tip of the submerged island, 
satisfies the parabolic approximation as in the case of a breakwater. In numerical 
computations, the same grid mesh designed for the previous example is also employed 
here. Converged solutions are obtained after two iterations ( n  = 2). In figures 7, 8 
and 9 the contours of reflected-wave amplitudes 111-1, transmitted wave amplitudes 
/?+I and the total wave amplitude 1111 are shown respectively. The increment of 
contours is 0.01. The parabolic features are clearly displaced in both forward- and 
backward-scattered wave fields. In figure 9, standing wave patterns are seen in front 
of the submerged island. The maximum reflection coefficient is approximately 10 yo 
in the present case. The wave amplitudes along the centreline y = 0 are also shown 
in figure 10. In figure 11, the total wave amplitude profiles along cross-sections 
xlh, = 1.0, 0.5, 0.0, -0.5 and - 1.0 are shown. We point out that along the major 
axis of the submerged island " /Ao  = 0, the amplitude changes rather abruptly near 
the tip of the island. This step-function-like disturbance is then diffracted (diffused) 
into both forward and backward wavefields. 
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